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I. INTRODUCTION

In this report, we address the calculation of ground motions

from earthquakes which are to be used to drive programs which

compute atmospheric pressure waves due to the earthquakes. In

particular, we examine the approximations made by Bache, et al.

(1981) used to formulate a model for the San Fernando earthquake.

These approximations allow the ground motions to be computed

economically on a dense grid on the free surface. The free surface

motions are required by the atmospheric propagation codes used by

Mission Research Corporation who will conduct that part of the

program. The approximate solutions were checked against exact

solutions and found to be good for these purposes. These results

are the subject of Section II.

The parameters of this source model were then changed to

provide a means for computing the ground motions of a much smaller

event-an aftershock (NL = 4.6) of the 1975 Oroville earthquake.

This event was chosen because strong-motion accelerograph data were

recorded and because these were several previous studies of the

event. Comparisons of the synthetic seismograms from our model with

observations and the modeling study of Boatwright (1981) are shown

in Section III.
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If. SOURCE AND PROPAGATION MODEL FOR
THE SAN FERNANDO EARTHQUAKE

Bache, et al. (1981) described an inexpensive method for

modelling ground motions at the free surface above the 1971 San

Fernando earthquake. These ground motion calculations are to serve

as input to programs which propagate the induced atmospheric

pressure wave to the ionosphere. The atmospheric propagation is to

be done by Mission Research Corporation (MRC). To achieve economy

in the ground motion calculations, various approximations to the

source and to the propagation models were made. The purpose of this

section is to investigate the validity of the assumptions by

comparing synthetic seismograms generated using these approximate

methods with more exact methods. We find that the approximations do

not significantly degrade the results.

We divide the approximations into two groups: those associated

with the source and those related to the propagation. The

eartnquake model is based on the crack model of Sato and Hirasawa

(1973). The singularities in acceleration due to abrupt stopping

phases have been replaced with boxcar smoothing functions. The

D-model of Boatwright (1980) is used to determine the amplitude and

duration of the boxcars. As discussed in Bache, et al. (1981), this

model or ones quite similar to it generate seismic radiation which

fit observations over a broad frequency band in the near-field and

the far-field. In other words, when the propagation is done

correctly, the model fits the data and is probably about the best we

can do.

The formulation used for radiation from the Sato and Hirasawa

model is that for a homogeneous whole-space with receivers in the

far-field. The solution is far-field in the sense that geometric

spreading is the same from all parts of the fault. The finiteness

of the fault is manifested only in the time history. The effects of

the free surface are then approximated using a frequency-independent

reflection coefficient. In the following, we examine these two

approximations.
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The far-field or point source representation appears safe due

to the nature of the San Fernando event. The data are best fit by

discrete, localized events which dominate the seismograms (e.g.,

Bache and Barker, 1978). The radiation from the initial deep event,

for example, is dominated by faulting over a scale of about 1 to

2 km.

The effects of free surface can be rigorously included only by

computing the response using a frequency dependent reflection

coefficient. Mathematically, this can be formulated as follows. In

the Laplace frequency - ray parameter domain (as is used in the
Cagniard-de Hoop method), the displacement at the free surface may

be written as

u(s) . -S(s)sIm E(p)K (spr)e R(p) dp (1)

where S is Laplace frequency

p is ray parameter

E(p) is the earthquake radiation pattern

L is the source depth

r is range

n is the vertical slowness

R(p) is the free surface reflection coeffient

K is a modified Bessel function

S(s) is the source spectrum, and

Im denotes the imaginary part.

This equation may be evaluated by the usual Cagniard approach

(Barker and Minster, 1980) or may be approximated as in Bache,

et al. (1981) by the saddle-point method. That is, we approximate
the expression with its value at the geometric travel time to and

ray parameter p0. Thus, for subcritical arrivals (p0 < 1/B),

3
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2 H(t-t O)
u(t) S(t) E(po) Real (R(po)) (2)

vfr 2 + h2

and for post-critical arrivals (p > 1/8),

ut -2 1to-tI 1 3
u(t) - S(t) E(po ) Im (R(po)) In it rz  (3)

(Mellman and Helmberger, 1978). These are essentially the

expressions evaluated by SFVERT described in Bache, et al. (1981).

Equations (2) and (3) may be inaccurate representations of the

full integral (1) when

1) the periods of interest are of the same order or greater

than the travel time, or

2) the Rayleigh wave is an important contribution (Equations

(2) and (3), of course, completely ignore the Rayleigh

wave).

To quantify the errors introduced by using (2) and (3), we have

compared ground motions and atmospheric pressure pulses using (2)

and (3) and the exact representation (1). To compute the solutions

for the Sato and Hirasawa source, we used the formulation for a

dislocation given by Barker and Minster (1980) with the substitution
a

M = I0

where I is given by Equation 7.1, Bache, et al. (1981).

Figures 1 and 2 show two comparisons: one where the range is

held fixed and the azimuth varied and one where the range changes

while the azimuth remains constant. Although the solutions do not

overlay, the important features, pulse duration and amplitude, agree

well except at a range of 5 km (Figure 2). The discrepancy at 5 km

is due to near-field effects. The differences at farther ranges are

4
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due to the reflection coefficients used in the two calculations.

This can be seen by examining exact Cagniard-de Hoop solutions and

the approximate solutions for a whole-space. These comparisons have

not been shown here.

A more important check is to compare the approximate solutions

propagated into the atmosphere by MRC (Wortman, 1981) with

calculations using the exact formulation. The comparisons are made

at a height of 40 km above the ground. The solutions are compared

at a range of 15 km at three azimuths in Figure 3. In Figure 4, the

solutions along a southern azimuth are shown at ranges of 15, 30,

and 40 km. Even at 40 km, where the Rayleigh wave might be

important, the agreement is good.

Although the approximate solutions contain many

approximations, they may be used to predict atmospheric pulse

durations, shape and amplitudes. Details of the pulse are not

represented but are excusable in light of the simplifications in

geology ana fault model.

7
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Figure 3. Pressure pulses from Source 1 at three ranges at a height
of 50 km and range of 15 km are shown. Solid lines are
solutions using exact Cagniard-de Hoop formulation. Dashed
lines are from propagating approximate solutions (Figure 15,
Wortman, 1981).
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Figure 4. Pressure pulses from Source 1 due south of the origin for
three ranges are shown. Solid lines are solutions using
exact Cagniard-de Hoop formulation. Dashed lines are from
propagating approximate solutions to a height of 40 km
(Figure 16, Wortman, 1981).
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III. A MODEL FOR AN AFTERSHOCK OF THE 1975

OROVILLE, CALIFORNIA EARTHQUAKE

The modified Sato and Hirasawa model described in Bache, et

al., (1981) was shown to agree with the observations of the San

Fernando Earthquake. Its implementation was shown in the previous

section to be a good approximation for atmospheric/ground motion

coupling calculations. In the following, we show how the parameters

of this model can be modified to provide a suitable model for the
aftershock occurring at 0103 hours on 3 August 1975. Its local

magnitude was ML = 4.6.

Our approach is to match the parameters of our model with

those of Boatwright (1981), who derived a model based on

observations of first motions and waveforms at stations within about

10 Km of the source. Boatwright's model and ours have many features

in common and the correspondence is straightforward. His results

are consistent with Langston and Butler (1976), who examined long
period teleseismic body waves of the main shock, and with Lahr, et

al., (1976), who concentrated on first motions and locations of the

entire main event-aftershock sequence.

The modified Sato and Hirasawa model used by Bache, et al.

(1981), is parameterized by its orientation (strike, dip, and rake),

fault radius L, its initial slip velocity Do, the rupture

velocity VR, and the parameter y which is the fraction of the

fault radius over which the rupture velocity is constant. For

positions on the fault farther than yL from the center, the rupture

velocity decays linearly to zero at the edge of the fault. The

values of these parameters used in this study are listed in Table 1.

The orientation parameters were taken from Boatwright's upper

hemisphere plot of the fault plane solution and refined by personal

communication. The fault radius was deduced from Boatwright's

estimate of the fault area of 2.3 km2 , and, since Sato's and

Hirasawa's fault is circular, L * 0.86 km.

10
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Table 1

SOURCE PARAMETERS FOR THE 0103
OROV ILLE AFTERSHOCK

Strike (Deg) 180

Dip (Deg) 65

Rake (Deg) -70

Depth (km) 8.8

Fault Radius (kin) 0.86

Fraction of radius for which
rupture is uniform 0.70

Rupture Velocity (km/sec) 3.1

Slip Velocity (cm/sec) 150

11
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The rupture velocity was found directly by Boatwright. The

initial slip velocity was computed from Equation (19) of Boatwright

(1980), which is taken from Dahlen (1974),

a V

where u is the shear modulus, C(vR/0) is the Kostrov function and

T e is the dynamic stress drop. Boatwright (1981) finds re = 214

bars and VRIB to be 0.85 which, for a circular fault, implies a
value of C - 0.8.

The parameter y was deduced from Boatwright's observation that

the healing interval in his model was 0.2 sec. The relationship

between y and this interval is given by Boatwright (1980), quation

(18) as

L -1

'H VR

which has the solution

~ C7v

where

VR
- 4tH  .

We have compared our radial velocity seismograms at six sites

with the solutions of Boatwright and with the observed strong motion

records as shown by Boatwright. The station positions relative to

12
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the epicenter are tabulated in Table 2. The seismograms are shown

in Figure 5. The records are dominated by a pulse-like shear

arrival which are characterized by a sharp positive arrival with a

lower frequency negative tail. This shape is matched well by ours

and Boatwright's synthetic seismograms at all stations except OMC.

WE have been unable to match this seismogram by a trial-and-error

search through the space of fault orientations near the one given

above. Station OMC is the only station not in the quadrant of the
radiation pattern occupied by the other five stations. We

consistently find that along ray paths near that going to OMC, the

shear arrival is very small. This is not the case for the data

tnere. However, the remaining stations fit rather well indicating

that the frequency content and scaling factors (e.g., slip velocity)

are correct.

13
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Table 2

STATION POSITIONS RELATIVE TO EPICENTER
OF 0103 OROVILLE AFTERSHOCK

Station Range Azimuth
(km) (Oeg., E of N)

1 9.2 -134
4 7.6 -120

OAP 7.5 -86
OMC 2.2 -25
EBH 5.3 -160
5 6.5 -141

14
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STATION 1
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Figure S. The left column shows the synthetic radial velocity
seismograms for the model described in the text. The right
column shows the observed seismograms (solid line) and the
synthetics from Boatwright (1981) (dashed line). Time is
relative to the P-wave arrival in the left column, and relative
to the initiation of the strong motion recording on the right.
Amplitudes of the synthetics on the left are as indicated.
Those on the right have been scaled to the observation.
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Figure 5. (Continued) The left column shows the synthetic radial
velocity seismograms for the modeldescribed in the text. The
right column shows the observed seismograms (solid line) and
the synthetics from Boatwright (1981) (dashed line). Time is
relative to the P-wave arrival in the left column, and relative
to the initiation of the strong motion recording on the right.
Amplitudes of the synthetics on the left are as indicated.
Those on the right have been scaled to the observation.
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